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a b s t r a c t

The solution for velocity and rate of deformation in an incompressible, homogeneously anisotropic
viscous host embedding a cylindrical rigid inclusion subjected to a far-field shearing parallel to the
anisotropy direction is presented. The rotation rate of the inclusion is equal to half the ambient shear rate
independently of the anisotropy factor. The flow in the matrix localizes into conjugate shear bands sub-
parallel to the anisotropy directions as the anisotropy factor increases. The presented anisotropic
analytical solution, which neglects the bending stiffness, approximates the flow in a layered medium in
the limit of infinitely thin layers. An initially planar layering is deflected adjacent to the inclusion and fold
trains propagate into the host with progressing deformation. Numerical simulations show that the
structural development leads to a decrease in the inclusion rotation rate and eventually to inclusion
stagnation at high strains. The fold shapes become more angular and the fold trains reach further out into
the host as the anisotropy factor is increased. Increasing the layering thickness (up to only 9 layers
intercepting the inclusion) has no significant effect on how the layer inclusion rotation rate evolves with
strain. A coarse layering in the host leads to a strongly reduced outreach of the fold trains and the
absence of tight folds. The analytical solution, which is derived for a planar anisotropy in the host, can be
employed to approximate the structural development for a weakly anisotropic host or small deformation.
Structural development of an anisotropic medium plays a major role in determining the system behavior
for large deformation.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The reconstruction of tectonometamorphic processes is a matter
of scrutinizing every scintilla of evidence. Nowadays, fine structures
preserved internally within porphyroblasts can be accurately char-
acterized using the Computed Tomography (CT) imaging technology
(e.g., Huddlestone-Holmes and Ketcham, 2010). Despite their
minute size, porphyroblast inclusion trails exhibit great potential of
recording critical information regarding shear strain (Schoneveld,
1977), shear rate (Biermeier and Stuwe, 2003; Christensen et al.,
1989), and style of folding (Jiang, 2001; Mancktelow and Visser,
1993; Williams and Jiang, 1999), to name a few.

Early models established the concurrent growth and rotation of
porphyroblasts in a non-coaxial flow as the formation mechanism
of snowball garnets that are characterized by spiral patterns of
inclusion trails (Rosenfeld, 1970; Spry, 1963). Sigmoidal inclusion
trails have been found less unambiguously indicative of the relative
rotation of the porphyroblasts and the foliation, since they may
i).
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develop due to post-tectonic helicitic growth over a crenulated
foliation (Williams and Schoneveld, 1981). The inclusion patterns
were investigated in numerical simulations, which adopted a linear
viscous flow model and passive layers in the host, for different
degrees of coupling at the inclusionehost interface (Bjornerud and
Zhang, 1994) and in three-dimensions (Gray and Busa, 1994). The
three-dimensional patterns obtained within the rotation model
were found consistent with measured microstructures of snowball
garnets (Williams and Jiang, 1999).

Nevertheless, the rotational behavior of porphyroblasts has
been a subject of numerous studies that laid out an apparent
conflict between mechanical models and geological observations.
In a series of papers, the ability of garnets to rotate with respect to
geographic coordinates was disputed by Bell et al. (Bell et al.,
1992a,b; Bell and Johnson, 1989; Johnson, 1993). The modeling
approach based on continuum mechanics was criticized as appar-
ently incapable of representing anything else than a perfectly
homogeneous isotropic medium and therefore inapplicable to
rocks (Aerden, 2005) and Bell et al. (1993) blamed mathematics for
being inadequate to handle highly heterogeneous systems.

Studying the rotation of porphyroblasts with respect to
geographic coordinates was shown to be a misguided concept
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(Jiang and Williams, 2004; Lister, 1993; Williams and Jiang, 1999).
The conflict is altogether apparent, as noted by e.g., Bons et al.
(2009), as both (i) a significant rotation of porphyroblast has been
documented, and (ii) mechanical models can predict the stabili-
zation, i.e. a vanishing rate of rotationwith respect to principal flow
directions, of rigid equidimensional inclusions under certain
circumstances. The stabilization mechanisms for a circular rigid
inclusion include the presence of a recrystallized weak rim (Schmid
and Podladchikov, 2004), an incoherent porphyroblastematrix
interface (Bjornerud and Zhang, 1994), and shear localization
(Johnson, 2009; ten Grotenhuis et al., 2002). The proposed models
abandon the simple model of a homogeneous isotropic viscous
embedding medium and a coherent grainehost interface, but still
rely on the continuum mechanics approach.

In the heat of the debate, the fact that rocks hosting porphyro-
blasts are often strongly sheared and therefore likely to be aniso-
tropic has been largely ignored. Only a few studies address the
problem of mutual interaction of an inclusion and its anisotropic
host. Fletcher (2009) showed that the rotation rate of an elliptical
rigid inclusion embedded in a homogeneous anisotropic matrix is
identical to the isotropic case. The question arises as to what extent
the initial rotation rate persists in large deformation that results in
deflection and folding of layers around the inclusion leading to
a heterogeneous anisotropy. In their review paper juxtaposing
conflicting opinions related to the rotational behavior of porphyr-
oblasts, Passchier et al. (1992) wrote “As matters stand, we do not
claim that we understand the complete behaviour of porphyro-
blasts in anisotropic media, .”. After two decades, this funda-
mental issue still remains without an answer, even though the
debate keeps rolling.

We investigate the rotation and structural evolution around
a rigid circular inclusion embedded in a layered host that
undergoes far-field layer-parallel simple shear. The effect of
changing layer thickness on the rotation rate and structural
development is investigated. In the limit of infinitely thin layers, an
analytical solution is given for the initial state of a planar layering. A
finite element model (FEM) is employed to study the effect of
a discrete layering in the host. The FEM model is used to study
a non-planar layering or anisotropy in large deformation. The
potential of the analytical solution to approximate the finite strain
evolution is investigated.
2. Model

2.1. Model setup

We study the flow around a circular rigid inclusion embedded in
an anisotropic linear viscous matrix, see Fig. 1. The flow is assumed
to be incompressible. In a complementary model, the matrix
consists of discrete isotropic alternating layers. The viscosity ratio is
set to ensure the same bulk anisotropic viscosity as in the primary
model. The inclusion/matrix interface is welded and the inclusion
radius is constant during deformation. The anisotropy is initially
homogeneous or equivalently the lamination is planar. We focus on
a layer-parallel simple shear. The symmetry of the model inhibits
the translation of the inclusion and the inclusion motion is limited
to the rotation.
Fig. 1. A schematic representation of the studied model. A rigid circular inclusion of
radius R is placed in the center of a rectangular domain of a height H and a width L.
Equally spaced isotropic layers of high m1 and low m2 viscosity are present in the host
and the layering is parallel to the shear direction. The number of individual layers
intercepting the inclusion NI is varied. In the limit NI / N, the host is modeled as an
anisotropic fluid with normal mn and shear ms viscosity with their ratio dictated by the
viscosity ratio m2/m1. Constant horizontal velocity on the top and bottom walls is
prescribed and periodic velocity is imposed on the lateral boundaries in numerical
simulations. An analytical solution is presented for R � H and R � L.
2.2. Anisotropic model

The matrix anisotropy is described by two principal viscosities,
ms in lamination-parallel shear, and mn in lamination-parallel
shortening or extension. With coordinate axes and the principal
axes of the anisotropy coinciding, the constitutive relations are
sxx ¼ �pþ 2mnDxx
syy ¼ �pþ 2m Dyy (1)
n
sxy ¼ 2msDxy

where p denotes pressure, or negative of the mean stress, sxx, syy,
sxy are the components of the stress tensor, and Dxx, Dyy, Dxy are the
components of the rate of deformation tensor. A two-dimensional
incompressible plane flow is considered

Dxx þ Dyy ¼ 0; Dzz ¼ 0 (2)

The degree of anisotropy is described by an anisotropy factor d

d ¼ mn
ms

(3)

Stress equilibrium, with no body forces, under a creeping flow
regime (Stokes flow) requires

vsxx
vx

þ vsxy
vy

¼ 0

vsxy
vx

þ vsyy
vy

¼ 0
(4)

The constitutive relations (1) refer to the principal axes. When
their orientation in the matrix is non-uniform, with finite defor-
mation, a further development implemented in the numerical code
is necessary. The constitutive relations must now be expressed so
that they hold for principal axes arbitrarily orientated with respect
to the fixed external reference axes x and y. An evolution equation
for this orientation that is concordant with the finite strain evolu-
tion of a layered medium is also required.

It is practical to introduce a vector field of unit vectors that are
locally normal to the lamination n!ð x!; tÞ. As the normal vectors
remain in the xy-plane due to the plane flow condition, it suffices to
describe their orientation using an angle 4 that measures the
rotation between the normal vector and the axis x, i.e., nx ¼ cos 4,
ny ¼ sin 4. The application of tensor transformation rules to (1)
yields:
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�
sxxþp
sxy

�
¼

"
mncos224þmssin

224 ðmn�msÞsin24cos24
ðmn�msÞsin24cos24 mnsin

224þmscos224

#�
Dxx
Dxy

�

(5)

For a layered material, the evolution law for n! is given by (e.g.,
Muhlhaus et al., 2002)

Dnk
Dt

¼
h
Wkp �

�
Dmknmnp � Dplnlnk

�i
np (6)

where W denotes the vorticity tensor.

2.3. Effective anisotropy factor of a layered medium

The bulk response of a discretely layered medium at a scale of
flow >> layer thickness may be approximated by an anisotropic
continuum with a vanishing bending stiffness. The conditions
under which this approximation is valid will be investigated. If the
alternating layers have isotropic viscosities m1 and m2, and are
present in thickness fractions f1 and f2, then (Biot, 1965):

mn ¼ f1m1 þ f2m2; ms ¼
�
f1
m1

þ f2
m2

��1

(7)

The viscosities ms and mn are equal to the theoretical lower and
upper bounds on the effective viscosity of the composite viscous
medium for any configuration of the two isotropic components
(Hill, 1952). Therefore, the anisotropy factor as defined by (2)
exceeds unity for (6), i.e. the viscous resistance is higher in layer-
parallel shortening/extension than in layer-parallel shearing. In
this study we use equal thickness fractions f1 ¼ f2 ¼ 0.5, for which

d ¼ 1
4

� ffiffiffiffiffi
m

p þ 1ffiffiffiffiffi
m

p
�2

(8)

where the viscosity ratiom¼ m2/m1. At equal thickness fractions, the
material has a maximum d for a givenm. Solving (7) with respect to
m results in

m ¼
ffiffiffi
d

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
d� 1

p
ffiffiffi
d

p
�

ffiffiffiffiffiffiffiffiffiffiffi
d� 1

p (9)

2.4. The initial state of planar lamination

Insight into the effect of matrix anisotropy is firstly provided by
the study of the initial state of homogeneous planar lamination. An
analytical solution for an elliptical inclusion in a homogeneous
anisotropic matrix was derived by Willis (1964). The solution is
given for an elastic medium, but it can easily be reduced to an
incompressible viscous medium. Here, we consider the special case
of a rigid circular inclusion of radius R subjected to a far-field simple
shear, with shear rate _G

N ¼ 2DN
xy, parallel to the principal axis of

anisotropy.
The velocity field that perturbs the background velocity field in

the matrix is given by the following formula

V ¼ i
RDN

xy

4g2

�
g

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ � 4g

p
� Xþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� þ 4g

p
þ X�

�

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
þ � 4g

q
� X

þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
� þ 4g

q
þ X

�
��

(10)

where X ¼ x þ iy, V ¼ vxþivy, i ¼ O1, g2 ¼ ð
ffiffiffi
d

p
� 1Þ=ð

ffiffiffi
d

p
þ 1Þ, and

the bar denotes the complex conjugate. The following coordinate
transformation
X� ¼ X � gX (11)

is used in (10). The net velocity field is obtained by adding the
velocity field of the basic-state flow of simple shear to the per-
turbing velocity (10).

The magnitude of the perturbing velocity vector and half the
shear rate (square root of the 2nd invariant of the rate of defor-
mation tensor based on the net velocity field) are shown in Fig. 2.
The weak anisotropy case, d ¼ 2, exhibits smooth variations
approximating the isotropic case (cf. Schmid and Podladchikov,
2003). Increasing the anisotropy factor d has a marked effect on
the perturbation flow and here we analyze d ¼ 100 case, see Fig. 2f.
The zones of high shear rate adjacent to the inclusion are enhanced
and they merge to form shear bands (I) enclosing a square domain
of low shear rate around the inclusion (II). The secondarymaximum
of shear rate (III), separated from the inclusion at small d, increases
in magnitude and is located near the corners of the bounding
square. Sharp conjugate shear bands (IV) extend in
directionsw parallel to the principal axes. The regions of low shear
rate (V) of a width that equals the inclusion diameter follow the
coordinate axes.

The rotation rate of the inclusion equals the far-field vorticity or
half the rate of simple shear. The value can be explained using
a symmetry argument (see Discussion) and is a particular example
of a general result stating that the rotation rate of an elliptical rigid
inclusion is not affected by a homogeneous anisotropy of thematrix
(Fletcher, 2009).

2.5. Large deformation

Deformation around the inclusion changes the local orienta-
tion of the principal axes of the anisotropy in the matrix. However,
it might be thought possible to obtain results using the analytical
solution for a planar lamination to approximate the flow in the
non-planar, non-uniform case. The displacement field obtained
upon integrating the analytically obtained velocity field is used to
move passive lines that are shown in the first column of Fig. 3.
Here, we set the anisotropy factor at d ¼ 10 and study the system
evolution up to shear strain GN ¼ 4. As shown below, the struc-
tures obtained using the analytical solution provide a reasonable
approximation to the true structural evolution up to shear strain
of GN ¼ 1 only.

The results of numerical experiments are presented in the
remaining columns (see Appendix for details regarding the
numerical implementation). The aspect ratio of the computational
box was set at L/H ¼ 2, and the ratio between the inclusion radius
and the box height R/H ¼ 0.05. Firstly, we discuss the NI ¼ N case,
i.e. the matrix is modeled as an anisotropic medium (d ¼ 10) and
the orientation of the anisotropy is updated according to the local
velocity gradient using (5) as the deformation progresses.

At GN ¼ 1, the initial orthogonal symmetry of the rate of
deformation field present is broken. Deformation is localized into
a distinct band inclined at a high angle to the shear direction. This
band coincides with the axis of the most prominent structure
visible in the host formed by the gentle flexure of the markers. The
zones of elevated shear rate adjacent to the inclusion areweakened.

At GN ¼ 1.6, a secondary band of localized shearing has devel-
oped and links the inclusion and the primary high shear rate band.
The secondary band is contained within a well-developed kink
band that together with deflections related to the primary band
encloses a structure similar to a box fold.

At GN ¼ 2, the high shear rate bands merge into a more diffuse
zone that is limited in outreach and inclined at 45� to the shear
direction with a tendency to steepen towards the tips. Two
subsidiary high shear rate bands have propagated vertically and



Fig. 2. The magnitude of velocity perturbation (a, b and c) and shear rate (d, e and f) around a rigid circular inclusion embedded in an infinite homogenous anisotropic host under
far-field simple shear with the rate of a unit. Columns show analytically obtained results for the anisotropy factor d ¼ 2, 10 and 100, respectively. Both fields are characterized by an
orthotropic symmetry and the results are shown in a selected quadrant only.
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horizontally from themain band near the inclusion, but these zones
are diffuse and the flow is localized to a lesser degree. The hori-
zontal band of low shear rate is now strongly enhanced. The
structure is dominated by the kink band that has propagated and
broadened partly in expense of the box fold interior.

At GN ¼ 4, the development of numerous diffuse bands of
enhanced shear rate predominates. The primary kink band has
been sheared and reoriented towards the shear plane and is now
associated with a low shear rate. However, the kink band has not
actively propagated further into the matrix. A secondary kink band
of smaller range and amplitude has developed behind the primary
kink band.

The results obtained for the discretely layered host (NI ¼ 33) are
shown in the last column of Fig. 3. Here, the viscosity ratio of the
isotropic layers is set correspondingly at m z 38 according to (8).
The top- and bottom-most points of the inclusion are embedded in
the middle of high viscosity layers.

The overall patterns of shear rate distribution and structure
evolution are retained as compared to the anisotropic host case.
The shear rate in the low viscosity layers is approximately twice
higher than in the NI ¼ N case and virtually vanishes in the high
viscosity layers. Isoclinal folds form mimicing the kink bands
observed in the NI ¼Nmodel. These fold stacks are pulled apart in
the subsequent shearing stages and less inclined segments escape
the tight folding stage. Similarly to the anisotropic case, no active
propagation of the deformation bands is visible and even unfolding
can be observed. The presence of strong layers causes the localized
deformation to become less pronounced leading to smaller
deflections within the folded bands.

We present structures for the cases d ¼ 2, 10 and 100 at G ¼ 5 in
Fig. 4. The viscosity ratio is set at m z 6 and 400 for d ¼ 2 and 100,
respectively. In the d ¼ 2 case, the structure can be described as
a band of tightly folded markers that is inclined at 20� to the shear
plane. The band is deflected towards the inclusion rim due to its
rotation. The analytical model provides a good approximation to
the structural evolution and the effect due to changing the layer
thickness is small.

In the d ¼ 10 case, the inclusion rotation is markedly reduced.
The structure is more angular and a second, less prominent band of
folds is present. Maximum fold amplitude is reduced but the flow
perturbation extends deeper into the matrix. The orientation of the
main deformation band is a little steeper than in the previous case.
Increasing the layer thickness does not significantly change the
inclusion rotation. For the finest layering, the structure is closely
similar to that in the anisotropic matrix case and includes the
secondary band of localized deformation. However, thick layering
reduces the distance over which the inclusion perturbs the far-field
flow. In addition, thicker layers prevent the formation of the iso-
clinal folds and secondary fold bands.

At d ¼ 100, the inclusion rotation is strongly reduced relative to
the rotation in the isotropic case. Fold amplitudes are markedly
reduced and the deformation band is less prominent than in the
previous cases. For NI ¼ N, marker deflections become ubiquitous
in a sector between about 40� and 80� to the shear plane. The
behavior is not observed for the finest discrete layering (NI ¼ 33)
that is studied. The structure developed is strongly suppressed in
the NI ¼ 9 case.

Evidently, the analytical anisotropic solution cannot be used
to study the structural development for strong anisotropy and
large deformation. The analytically modeled structures are only
marginally dependent on the anisotropy factor and can be closely
approximated by that for an isotropic matrix.

The analysis of Fig. 4 indicates that the rotation of the inclusion
differs between different simulations and predominantly depends



Fig. 3. Structure and shear rate distribution at GN ¼ 0, 1, 1.6, 2, 4. The results are shown
for the anisotropic and layered host case with NI ¼ 33. The anisotropy factor equals 10
and the viscosity ratio is set accordingly. In the case of the anisotropic host and
analytical model an arbitrarily spaced set of lines is used as passive markers. Note the
difference in the colorbars. Two quadrants are required to show the results due to
symmetry breaking. Only a small portion of the computational box is shown.
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on d. The expected rotation of a rigid circular inclusion embedded in
an isotropic matrix at G ¼ 5 is 145�. The rates of the inclusion
rotation as a function of the shear strain are shown in Fig. 5 for
different d and NI.

The initial rotation rate deviates from the theoretical value of
0.5, which is equal to the background vorticity, and the deviation
increases with increasing the anisotropy factor. In the NI /N case,
the effect is solely due to the proximity of boundaries and with
decreasing the radius of the inclusion it disappears. Increasing the
layer thickness leads to an additional decrease of the rotation rate.
Here, we used the strong embedding, i.e. top and bottom of the
inclusion are within strong layers. The effect is more prominent if
the inclusion is embedded in weak layers.

The rotation rate curves show an overall decrease with strain.
For d ¼ 2, the rotation rate decreases to around 60% of the initial
value. For d ¼ 10, the rotation rate abruptly decreases at GN ¼ 1.5
and by GN ¼ 2 the inclusion effectively stagnates. For d ¼ 100, even
an antithetic rotation develops at GN ¼ 3 for NI ¼ 33. The net
rotation of the inclusions is 100�, 50� and 20� at GN ¼ 5 for
d ¼ 2,10,100, respectively. The effect of the layer thickness on the
rotation rate is irregular and rather small.
3. Discussion

3.1. Inclusion rotation

The rotation rate of a rigid circular inclusion embedded in an
orthotropic infinite medium is zero in a pure shear flow. The
behavior can be explained by line symmetry with respect to the
shortening direction both for shortening parallel/normal to the
anisotropy trace and in direction bisecting the previous two. For an
arbitrarily oriented shortening direction, the solution is a superpo-
sition of the two solutions leaving the inclusion rotationless. Thus,
the rotation rate is determined by the magnitude of the ambient
vorticity, which equals half the shear rate in the case of simple
shear.

The rotation rate that was numerically measured for the initial
state of a planar anisotropy deviates from the theoretical value
predicted for an infinite host. The deviation can be attributed to the
proximity of dissimilar horizontal and vertical model boundaries.
The boundary effect was recognized as a factor that can contribute
to the stabilization of inclusions embedded in an isotropic host and
occurring in spatially confined shear zones (Marques et al., 2005).
For fixed spatial dimensions of themodel, increasing the anisotropy
factor leads to an increased perturbation range and a stronger
boundary effect, see initial rotation rates in Fig. 5. Here, we do not
present a detailed investigation of the boundary effect. Instead, we
tried to keep it minimal in our simulations by using a sufficiently
small inclusion radius with respect to the box height and width.

The initial rotation rate additionally decreases with increasing
the thickness of layers. The reduction equals 20% of the limiting rate
at the coarsest level studied and for the highest anisotropy factor.
The deviation can be explained by the loss of orthotropic symmetry
due to the presence of discrete layers.

The rotation rate decreases with strain already for d ¼ 2 and
shows a marked evolution for larger anisotropy factors. The struc-
ture that evolves around the inclusion is characterized by point
symmetry only and the change of rotation rate is not unexpected.
As some concerns may arise as to whether the rotation rate curves
in Fig. 5 are affected by the boundary effect due to an increasing
outreach of the structure with strain, we performed additional FEM
simulations with an even smaller inclusion radius. The rotation rate
curves remain largely unaffected showing that the structural
development plays a predominant role on the inclusion rotation for
the inclusion size of R/H ¼ 0.05.

We found that changing the thickness of layers has an effect on
both the inclusion rotation rate and the structural development.
While the differences between the rotation rate curves are rather
small even at late stages, the structures that develop around the
inclusion differ appreciably. Looking at it from a different
perspective, the presence of prominent fold trains reaching far into
the host is not a prerequisite for a reduced rotation rate.

We propose the structural development as a new stabilization
mechanism for a rigid circular inclusion embedded in a layered host
subject to simple shear. The model, which is entirely based on
continuum mechanics, provides an explanation to limited rotation
of porphyroblasts by invoking the anisotropy of a layered host that
is heterogeneously reoriented in progressing deformation. The
mechanism is corroborated by the detection of snowball garnets
recording a slow down of rotation rate with deformation as evi-
denced by Biermeier and Stuwe (2003). In our opinion, the slowing
down rotation rate in this case is not necessarily related to a change
in the ambient shear rate, as advocated by the authors, but could
reflect an inherent behavior of rigid equidimensional inclusions as
layered material is deflected in their surroundings.

The values of the anisotropy factor that we used in our study
require some consideration. At equal fractions of low and high



Fig. 4. Matrix structure at G ¼ 5. Small portion of the computational domains displayed. Anisotropic factor d is constant in columns, and the number of intersecting layers NI is fixed
in rows. Structures obtained using the analytical solution are shown in the last row.
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viscosity layers, the anisotropy factors d¼ 2, 10 and 100 correspond
to viscosity ratios of w6, 38 and 380, respectively. In our opinion,
the intermediate case of d ¼ 10 is arguably plausible to occur in
natural shear zones. In this respect, an intrinsic anisotropy of layers
may play an important role as it adds to the overall anisotropy. For
example, Bayly (1970) estimated the anisotropy factor of mica-rich
layers to exceed 12.5 based on measurements of characteristics of
chevron fold developed in mica-poor and mica-rich sequences.

Using an initially unperturbed planar lamination around the
inclusion appears to be merely a simplification in the model
formulation. A modified model could be envisaged whereby an
initially heterogeneous but isotropic host is gradually transformed
into a layered medium or an early-stage foliation oriented at an
angle to the shear direction is used at the onset of simulations. The
effect of such transient stage on the inclusion rotation remains
unknown. However, rigid inclusions such as garnets often grow
syntectonically in an already layered host. Relaxing the constant
radius assumption is probably the most needed modification of the
presented model. Here, we can only speculate that the stabilization
effect can be somewhat diminished at high growth to shear rates as
the perturbed zone is progressively enclosed by the growing rigid
rim. The model would also allow us to study the geometry of
enclosed layers that could be directly compared to natural
observations.

3.2. Structure development

The results of our large strain FEM simulations that allow for the
non-planar, non-uniform lamination are strongly affected by the
degree of host anisotropy. The effects related to anisotropy include



Fig. 5. Rotation rate of the inclusion for anisotropy factor d ¼ 2 (a) 10 (b) and 100 (c) and NI ¼ 9, 17, 33 and N as a function of shear strain GN.
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(1) a limited deflection of the markers adjacent to the inclusion
stemming from a reduced rotation rate of the inclusion and (2)
sharpening of the marker deflections in the major deformation
band. The appearance of the subsidiary bands of localized shearing
and the formation and propagation of related kink bands could be
indicative of the host anisotropy. The kink bands undergo an initial
active growth stage that is followed by band stiffening and trans-
position towards the shearing direction. The fact that the propa-
gation is inhibited at late stages raises the general question of how
far structural perturbations can propagate orthogonal to the shear
plane in an anisotropic rock. The boundary effects should not be
disregarded in this respect.

Increasing the anisotropy factor leads to a reduction of fold
amplitudes on behalf of a pervasive development of internal
instabilities. The latter requires high enough anisotropy factor and
favorable orientation of the anisotropy trace. However, the struc-
ture in such regions is fundamentally irresolvable, as the length
scale of the variations of the anisotropy direction is not dictated by
the inclusion size in these regions. Hence, the structure becomes
effectively scale-free, its evolution becomes mesh-size dependent
and cannot be properly resolved despite the aggressive mesh
adaptation that was employed in our simulations. The difficulty is
also reflected in the rotation rate curves, where occasional sharp
changes occur during remeshing stages (see Appendix).

A characteristic length scale may be introduced into the aniso-
tropic model by incorporating the bending stiffness. Such a scheme,
relying on a couple stress (micro-polar) formulation, has been
proposed (e.g., Muhlhaus et al., 2002). Besides the obvious rationale
that a finite length scale of the layering exists for real systems,
employing such a code allows for circumventing the mesh sensi-
tivity problem. Nevertheless, employing such a model will only
partly solve the problem of approximating a layered material.
Firstly, the upscaled model may fail if high spatial gradients of the
layer thickness occur as it changes during the deformation.
Furthermore, the rotation rate of the inclusion depends on how
exactly the inclusion is embedded in the layered material, i.e. top
and bottom in strong or weak layers. In this respect, the discrete
layer approach is advantageous as it is free of any built-in uncer-
tainties inherent to all upscaling techniques and yields relevant
results to cases where relatively coarse layering/banding is present.
The disadvantage is, however, the need for large numerical reso-
lution. Nevertheless, some parameters such as the rotation rate as
a function of strain are largely independent of the exact structure
development in the matrix and may readily be studied with an
upscaling approach. One may envision a hybrid model where the
focus of interest is resolved explicitly and the more distal parts are
treated with an effective material model.
Increasing the thickness of discrete layers remarkably reduces the
perturbation range and largely affects the structure. The effect can be
attributed to the bending stiffness of strong layers. The bending
stiffness seems to prevent an active buckling from happening in the
d ¼ 100 and NI ¼ 33 case, while a pervasive internal instability is
manifested in the complementary anisotropic model. In the coarsest
model, the perturbation range is reduced to a degree that only a few
open folds are formed. Folds like the one present in Fig. 4 for d ¼ 10
andNI¼ 9 are likely to be transported intact away from the inclusion
along weak layers avoiding either isoclinal development or unfold-
ing. These folds may appear rootless at even later stages.

Marques and Cobbold (1995) studied the formation of sheath
folds around rigid inclusions embedded in a viscous host with
passive layers subjected to simple shear flow in the far field.
Marques et al. (2008) show how increasing the viscosity ratio
between layers inhibits the development of strongly tubular folds.
Despite the fact that the formation of sheath folds cannot be
directly studied in our two-dimensional model, the tight and iso-
clinal folds that appear in our simulations could be considered as
their preconditioners. In our model, the development of isoclinal
folds is conditioned by the combined effect of the viscosity ratio
and the ratio between the layer thickness and inclusion radius
rather than the viscosity ratio alone.

The presented analytical solutionwas employed to approximate
the flow in the non-planar, non-uniform case. However, the
structures shown in Fig. 4 are only marginally dependent on the
anisotropy factor for high strains and are very different than
the structures modeled numerically. The solution should be used
with caution if large rotations of the director field occur in the
matrix causing a departure from the initial planar state of the host
anisotropy.

4. Conclusions

A rigid circular inclusion embedded in an anisotropic host and
subject to far-field simple shear is studied. An analytical solution is
given for the initial state of planar anisotropy and the effects of
large deformation and finite layering thickness are studied
numerically using finite element models.

1) The matrix anisotropy has a prominent effect on the rotation
rate of a rigid inclusion subject to simple shear in the far field.
For the anisotropy factor d ¼ 10, the net rotation of the inclu-
sion yields 50� after shear strain G ¼ 5, while the rotation of
145� is expected in the isotropic case. We propose the flow-
induced perturbation of the host anisotropy around the inclu-
sion as a stabilization mechanism in simple shear.
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2) The structure developing around the inclusion is strongly
affected by the host anisotropy. The layers intercepting the
inclusion are markedly less deflected giving the impression of
a smaller accumulated strain. Box folds and kink bands develop
around the inclusion. The range of the flow perturbation
increases with increasing anisotropy but the amplitude of folds
is reduced.

3) The major effect of increasing the thickness of layers in the host
is the reduction of the perturbation range. In the coarse limit,
the formation of isoclinal recumbent folds is prevented and
open folds result instead. These may in subsequent stages be
advected away from the inclusion and appear as rootless
structures.

4) In the limit of thin layering, the effective anisotropy provides
a robust description of a layered medium. For high anisotropy
factor, the inherent lack of a finite length scale in the aniso-
tropic scheme leads to resolution problems andmodels with an
inbuilt bending stiffness are preferred. Future numerical
studies should address the problem of how robust such models
are at the coarse layer thickness limit and with respect to non-
uniform layer thickening.

5) Field studies that look at the behavior of heterogeneities in
anisotropic materials should consider that the magnitude of
inclusion rotation and foliation deflection around may yield
appreciable strain underestimates when natural structures are
interpreted without the effects of anisotropy taken into
account.

Acknowledgments

This work was supported by a Center of Excellence grant from
the Norwegian Research Council to PGP.Wewould like to thank Ray
Fletcher, Neil Mancketlow, Fernando Ornelas Marques and Dazhi
Jiang for constructive comments regarding this work. We would
also like to thank the Norwegian High Performance Computing
(NOTUR) network to grant us machine access.

Appendix. Numerical model

In this study, we have utilized our unstructured mesh FEM code
MILAMIN implemented in MATLAB (Dabrowski et al., 2008). The
use of an efficient self-developed implementation of FEM is
necessitated by a large number of required timesteps and a high
discretization level (>1,000,000 computational nodes).

A reliable mesh generator is required to create high quality
unstructuredmeshes fitting interfaces between different layers and
allowing for remeshing as complex structures evolve with defor-
mation. For this purpose, we have chosen Triangle software
developed by Shewchuk (2007). We find this software fast, robust
and flexible. Furthermore, the possibility of an element area control
existing in Triangle allows us to utilize better the power of an
unstructuredmesh approach employed in this study by refining the
mesh in the vicinity of the inclusion and adapting it according to
the local variations of the anisotropy direction.

Technical issues that have arisen during finite strain runs need
some attention. By employing an unstructured mesh FEM, we have
a possibility to update the mesh geometry according to the
computed velocity field and continue with calculations. This
Lagrangian approach has been used in both categories of the
studied models. Advantageously, the advection of the material
properties defined in integrations points such as anisotropy trace
inclination is automatically taken care of. But a computational
mesh must be occasionally regenerated to improve its quality that
deteriorates after a number of updates. For the layered host case,
we only need to track internal and external interfaces. However,
inclinations of the anisotropy trace need to be interpolated to new
integration points during this stage for the other category of our
models. We have implemented an interpolation scheme in a spirit
of krigging methods. The utilized scheme relies on identifying
a prescribed amount of neighboring integration points (belonging
to an old mesh), forming a radial basis functions and computing the
corresponding weights in a way that enforces a collocation. Next,
the radial basis functions are evaluated for the point of interest (i.e.,
new integration point) and together with the computed weights
and inclinations defined in old integration points are used to
compute a new value of the anisotropy orientation.
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